Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

HD 76349


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Oxygen abundances in nearby stars. Clues to the formation and evolution of the Galactic disk
The abundances of iron and oxygen are homogeneously determined in asample of 523 nearby (d<150 pc) FGK disk and halo stars withmetallicities in the range -1.5<[Fe/H]<0.5. Iron abundances wereobtained from an LTE analysis of a large set of Fe I and Fe II lineswith reliable atomic data. Oxygen abundances were inferred from arestricted non-LTE analysis of the 777 nm O I triplet. We adopted theinfrared flux method temperature scale and surface gravities based onHipparcos trigonometric parallaxes. Within this framework, theionization balance of iron lines is not satisfied: the mean abundancesfrom the Fe I lines are systematically lower by 0.06 dex than those fromthe Fe II lines for dwarf stars of Teff>5500 K and[Fe/H]<0.0, and giant stars of all temperatures and metallicitiescovered by our sample. The discrepancy worsens for cooler and metal-richmain-sequence stars. We use the stellar kinematics to compute theprobabilities of our sample stars to be members of the thin disk, thickdisk, or halo of the Galaxy. We find that the majority of thekinematically-selected thick-disk stars show larger [O/Fe] ratioscompared to thin-disk stars while the rest show thin-disk abundances,which suggests that the latter are thin-disk members with unusual(hotter) kinematics. A close examination of this pattern for disk starswith ambiguous probabilities shows that an intermediate population withproperties between those of the thin and thick disks does not exist, atleast in the solar neighborhood. Excluding the stars with unusualkinematics, we find that thick-disk stars show slowly decreasing [O/Fe]ratios from about 0.5 to 0.4 in the -0.8<[Fe/H]<-0.3 range. Usinga simple model for the chemical evolution of the thick disk we show thatthis trend results directly from the metallicity dependence of the TypeII supernova yields. At [Fe/H]>-0.3, we find no obvious indication ofa sudden decrease (i.e., a "knee") in the [O/Fe] vs. [Fe/H] pattern ofthick-disk stars that would connect the thick and thin disk trends at ahigh metallicity. We conclude that Type Ia supernovae (SN Ia) did notcontribute significantly to the chemical enrichment of the thick disk.In the -0.8<[Fe/H]<+0.3 range, thin-disk stars show decreasing[O/Fe] ratios from about 0.4 to 0.0 that require a SN Ia contribution.The implications of these results for studies of the formation andevolution of the Galactic disk are discussed.Tables 4-6 are only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/465/271 Partially based onobservations obtained with the Hobby-Eberly Telescope, which is a jointproject of the University of Texas at Austin, the Pennsylvania StateUniversity, Stanford University, Ludwig-Maximilians-UniversitätMünchen, and Georg-August-Universität Göttingen; and datafrom the UVES Paranal Observatory Project (ESO DDT Program ID266.D-5655).

Pulkovo compilation of radial velocities for 35495 stars in a common system.
Not Available

Effective temperature scale and bolometric corrections from 2MASS photometry
We present a method to determine effective temperatures, angularsemi-diameters and bolometric corrections for population I and II FGKtype stars based on V and 2MASS IR photometry. Accurate calibration isaccomplished by using a sample of solar analogues, whose averagetemperature is assumed to be equal to the solar effective temperature of5777 K. By taking into account all possible sources of error we estimateassociated uncertainties to better than 1% in effective temperature andin the range 1.0-2.5% in angular semi-diameter for unreddened stars.Comparison of our new temperatures with other determinations extractedfrom the literature indicates, in general, remarkably good agreement.These results suggest that the effective temperaure scale of FGK starsis currently established with an accuracy better than 0.5%-1%. Theapplication of the method to a sample of 10 999 dwarfs in the Hipparcoscatalogue allows us to define temperature and bolometric correction (Kband) calibrations as a function of (V-K), [m/H] and log g. Bolometriccorrections in the V and K bands as a function of T_eff, [m/H] and log gare also given. We provide effective temperatures, angularsemi-diameters, radii and bolometric corrections in the V and K bandsfor the 10 999 FGK stars in our sample with the correspondinguncertainties.

Abundance trends in kinematical groups of the Milky Way's disk
We have compiled a large catalogue of metallicities and abundance ratiosfrom the literature in order to investigate abundance trends of severalalpha and iron peak elements in the thin disk and the thick disk of theGalaxy. The catalogue includes 743 stars with abundances of Fe, O, Mg,Ca, Ti, Si, Na, Ni and Al in the metallicity range -1.30 < [Fe/H]< +0.50. We have checked that systematic differences betweenabundances measured in the different studies were lower than randomerrors before combining them. Accurate distances and proper motions fromHipparcos and radial velocities from several sources have been retreivedfor 639 stars and their velocities (U, V, W) and galactic orbits havebeen computed. Ages of 322 stars have been estimated with a Bayesianmethod of isochrone fitting. Two samples kinematically representative ofthe thin and thick disks have been selected, taking into account theHercules stream which is intermediate in kinematics, but with a probabledynamical origin. Our results show that the two disks are chemicallywell separated, they overlap greatly in metallicity and both showparallel decreasing alpha elements with increasing metallicity, in theinterval -0.80 < [Fe/H] < -0.30. The Mg enhancement with respectto Fe of the thick disk is measured to be 0.14 dex. An even largerenhancement is observed for Al. The thick disk is clearly older than thethin disk with tentative evidence of an AMR over 2-3 Gyr and a hiatus instar formation before the formation of the thin disk. We do not observea vertical gradient in the metallicity of the thick disk. The Herculesstream has properties similar to that of the thin disk, with a widerrange of metallicity. Metal-rich stars assigned to the thick disk andsuper-metal-rich stars assigned to the thin disk appear as outliers inall their properties.

The [Zn/Fe] - [Fe/H] trend for disk and halo stars
Zn abundances, derived from a model atmosphere analysis of theλ6362.35 Å Zn I line, are presented for 44 thin disk, 10thick disk and 8 halo dwarf stars in the metallicity range -1.0 <[Fe/H] < +0.2. It is found that [Zn/Fe] in thin disk stars shows aslight increasing trend with decreasing metallicity reaching a value[Zn/Fe] ≃ +0.1 at [Fe/H] = -0.6. The thick disk stars in themetallicity range -0.9 < [Fe/H] < -0.6 have an average [Zn/Fe]≃ +0.15 dex, whereas five alpha-poor and Ni-poor halo stars in thesame metallicity range have [Zn/Fe] ≃ 0.0 dex. These resultsindicate that Zn is not an exact tracer of Fe as often assumed inabundance studies of damped Lyman-alpha systems (DLAs). A betterunderstanding of the nucleosynthesis of Zn is needed in order to obtainmore detailed information on the past history of star formation in DLAsfrom e.g. the observed sulphur/zinc ratio.Based on observations collected at the National AstronomicalObservatories, Xinglong, China and the European Southern Observatory, LaSilla, Chile (ESO No. 67.D-0106).

Stellar Chemical Signatures and Hierarchical Galaxy Formation
To compare the chemistries of stars in the Milky Way dwarf spheroidal(dSph) satellite galaxies with stars in the Galaxy, we have compiled alarge sample of Galactic stellar abundances from the literature. Whenkinematic information is available, we have assigned the stars tostandard Galactic components through Bayesian classification based onGaussian velocity ellipsoids. As found in previous studies, the[α/Fe] ratios of most stars in the dSph galaxies are generallylower than similar metallicity Galactic stars in this extended sample.Our kinematically selected stars confirm this for the Galactic halo,thin-disk, and thick-disk components. There is marginal overlap in thelow [α/Fe] ratios between dSph stars and Galactic halo stars onextreme retrograde orbits (V<-420 km s-1), but this is notsupported by other element ratios. Other element ratios compared in thispaper include r- and s-process abundances, where we find a significantoffset in the [Y/Fe] ratios, which results in a large overabundance in[Ba/Y] in most dSph stars compared with Galactic stars. Thus, thechemical signatures of most of the dSph stars are distinct from thestars in each of the kinematic components of the Galaxy. This resultrules out continuous merging of low-mass galaxies similar to these dSphsatellites during the formation of the Galaxy. However, we do not ruleout very early merging of low-mass dwarf galaxies, since up to one-halfof the most metal-poor stars ([Fe/H]<=-1.8) have chemistries that arein fair agreement with Galactic halo stars. We also do not rule outmerging with higher mass galaxies, although we note that the LMC and theremnants of the Sgr dwarf galaxy are also chemically distinct from themajority of the Galactic halo stars. Formation of the Galaxy's thickdisk by heating of an old thin disk during a merger is also not ruledout; however, the Galaxy's thick disk itself cannot be comprised of theremnants from a low-mass (dSph) dwarf galaxy, nor of a high-mass dwarfgalaxy like the LMC or Sgr, because of differences in chemistry.The new and independent environments offered by the dSph galaxies alsoallow us to examine fundamental assumptions related to thenucleosynthesis of the elements. The metal-poor stars ([Fe/H]<=-1.8)in the dSph galaxies appear to have lower [Ca/Fe] and [Ti/Fe] than[Mg/Fe] ratios, unlike similar metallicity stars in the Galaxy.Predictions from the α-process (α-rich freeze-out) would beconsistent with this result if there have been a lack of hypernovae indSph galaxies. The α-process could also be responsible for thevery low Y abundances in the metal-poor stars in dSph's; since [La/Eu](and possibly [Ba/Eu]) are consistent with pure r-process results, thelow [Y/Eu] suggests a separate r-process site for this light(first-peak) r-process element. We also discuss SNe II rates and yieldsas other alternatives, however. In stars with higher metallicities([Fe/H]>=-1.8), contributions from the s-process are expected; [(Y,La, and Ba)/Eu] all rise as expected, and yet [Ba/Y] is still muchhigher in the dSph stars than similar metallicity Galactic stars. Thisresult is consistent with s-process contributions from lower metallicityAGB stars in dSph galaxies, and is in good agreement with the slowerchemical evolution expected in the low-mass dSph galaxies relative tothe Galaxy, such that the build-up of metals occurs over much longertimescales. Future investigations of nucleosynthetic constraints (aswell as galaxy formation and evolution) will require an examination ofmany stars within individual dwarf galaxies.Finally, the Na-Ni trend reported in 1997 by Nissen & Schuster isconfirmed in Galactic halo stars, but we discuss this in terms of thegeneral nucleosynthesis of neutron-rich elements. We do not confirm thatthe Na-Ni trend is related to the accretion of dSph galaxies in theGalactic halo.

The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ˜14 000 F and G dwarfs
We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our˜63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989

Lithium abundances of the local thin disc stars
Lithium abundances are presented for a sample of 181 nearby F and Gdwarfs with accurate Hipparcos parallaxes. The stars are on circularorbits about the Galactic centre and, hence, are identified as belongingto the thin disc. This sample is combined with two published surveys toprovide a catalogue of lithium abundances, metallicities ([Fe/H]),masses, and ages for 451 F-G dwarfs, almost all belonging to the thindisc. The lithium abundances are compared and contrasted with publishedlithium abundances for F and G stars in local open clusters. The fieldstars span a larger range in [Fe/H] than the clusters for which [Fe/H]~=0.0 +/- 0.2. The initial (i.e. interstellar) lithium abundance of thesolar neighbourhood, as derived from stars for which astration oflithium is believed to be unimportant, is traced from logɛ(Li) =2.2 at [Fe/H]=-1 to logɛ(Li) = 3.2 at +0.1. This form for theevolution is dependent on the assumption that astration of lithium isnegligible for the stars defining the relation. An argument is advancedthat this latter assumption may not be entirely correct, and, theevolution of lithium with [Fe/H] may be flatter than previouslysupposed. A sharp Hyades-like Li dip is not seen among the field starsand appears to be replaced by a large spread among lithium abundances ofstars more massive than the lower mass limit of the dip. Astration oflithium by stars of masses too low to participate in the Li dip isdiscussed. These stars show little to no spread in lithium abundance ata given [Fe/H] and mass.

The Pul-3 catalogue of 58483 stars in the Tycho-2 system
A catalogue of positions and proper motions of 58483 stars (Pul-3) hasbeen constructed at the Pulkovo observatory. The Pul-3 is based on theresults of measurements of photographic plates with galaxies (Deutsch'splan). All plates were taken using the Pulkovo Normal Astrograph (thefirst epoch is in the 1950s and the second epoch is in the 1970s).The Pul-3 catalogue contains stars of mainly 12 to 16.5 mag in 146fields with galaxies in the declination zone from -5o to+85o. The Tycho-2 has been used as a reference catalogue.The mean epoch of the Pul-3 is 1963.25. The internal positional accuracyof the Pul-3 catalogue at the mean epoch of observations is ±80mas. The accuracy of the proper motions is mostly within ±3mas/yr to ±12 mas/yr. Comparisons of the Pul-3 with Tycho-2 andARIHIP have been done at the mean epoch of the Pul-3. The Pul-3 externalpositional accuracy relative to Tycho-2 is ±150 mas.The catalogue is only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/357

Non-LTE Analysis of the Sodium Abundance of Metal-Poor Stars in the Galactic Disk and Halo
We performed an extensive non-LTE analysis of the neutral sodium linesof Na I 5683/5688, 5890/5896, 6154/6161, and 8183/8195 in disk/halostars of types F-K covering a wide metallicity range (-4 <≈[Fe/H] <≈ +0.4), using our own data as well as data collectedfrom the literature. For comparatively metal-rich disk stars (-1<≈ [Fe/H] <≈ +0.4) where the weaker 6154/6161 linesare the best abundance indicators, we confirmed [Na/Fe] ˜ 0 with an"upturn" (i.e., a shallow/broad dip around -0.5 <≈ [Fe/H]<≈ 0) as already reported in previous studies. For themetal-deficient halo stars, where the much stronger 5890/5896 or8183/8195 lines subject to considerable (negative) non-LTE correctionsamounting to 0.5 dex have to be used, our analysis suggests mildly"subsolar" [Na/Fe] values down to ˜ -0.4 (with a somewhat largescatter of ˜ ± 0.2 dex) on the average at the typical halometallicity of [Fe/H] ˜ -2, followed by a rise again to a near-solarratio of [Na/Fe] ˜ 0 at the very metal-poor regime [Fe/H] ˜ -3to -4. These results are discussed in comparison with the previousobservational studies along with the theoretical predictions from theavailable chemical evolution models.

The chemical compositions of Galactic disc F and G dwarfs
Photospheric abundances are presented for 27 elements from carbon toeuropium in 181 F and G dwarfs from a differential local thermodynamicequilibrium (LTE) analysis of high-resolution and high signal-to-noiseratio spectra. Stellar effective temperatures (Teff) wereadopted from an infrared flux method calibration of Strömgrenphotometry. Stellar surface gravities (g) were calculated from Hipparcosparallaxes and stellar evolutionary tracks. Adopted Teff andg values are in good agreement with spectroscopic estimates. Stellarages were determined from evolutionary tracks. Stellar space motions (U,V, W) and a Galactic potential were used to estimate Galactic orbitalparameters. These show that the vast majority of the stars belong to theGalactic thin disc.Relative abundances expressed as [X/Fe] generally confirm previouslypublished results. We give results for C, N, O, Na, Mg, Al, Si, S, K,Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Sr, Y, Zr, Ba, Ce, Nd and Eu. Theα elements - O, Mg, Si, Ca and Ti - show [α/Fe] to increaseslightly with decreasing [Fe/H]. Heavy elements with dominantcontributions at solar metallicity from the s-process show [s/Fe] todecrease slightly with decreasing [Fe/H]. Scatter in [X/Fe] at a fixed[Fe/H] is entirely attributable to the small measurement errors, afterexcluding the few thick disc stars and the s-process-enriched CHsubgiants. Tight limits are set on `cosmic' scatter. If a weak trendwith [Fe/H] is taken into account, the composition of a thin disc starexpressed as [X/Fe] is independent of the star's age and birthplace forelements contributed in different proportions by massive stars (Type IIsupernovae), exploding white dwarfs (Type Ia supernovae) and asymptoticred giant branch stars.By combining our sample with various published studies, comparisonsbetween thin and thick disc stars are made. In this composite sample,thick disc stars are primarily identified by their VLSR inthe range -40 to -100 km s-1. These are very old stars withorigins in the inner Galaxy and metallicities [Fe/H]<=-0.4. At thesame [Fe/H], the sampled thin disc stars have VLSR~ 0 kms-1, and are generally younger with a birthplace at about theSun's Galactocentric distance. In the range -0.35 >=[Fe/H]>=-0.70,well represented by present thin and thick disc samples, [X/Fe] of thethick disc stars is greater than that of thin disc stars for Mg, Al, Si,Ca, Ti and Eu. [X/Fe] is very similar for the thin and thick disc for -notably - Na and iron-group elements. Barium ([Ba/Fe]) may beunderabundant in thick relative to thin disc stars. These results extendprevious ideas about composition differences between the thin and thickdisc.

Statistical cataloging of archival data for luminosity class IV-V stars. II. The epoch 2001 [Fe/H] catalog
This paper describes the derivation of an updated statistical catalog ofmetallicities. The stars for which those metallicities apply are ofspectral types F, G, and K, and are on or near the main sequence. Theinput data for the catalog are values of [Fe/H] published before 2002February and derived from lines of weak and moderate strength. Theanalyses used to derive the data have been based on one-dimensional LTEmodel atmospheres. Initial adjustments which are applied to the datainclude corrections to a uniform temperature scale which is given in acompanion paper (see Taylor \cite{t02}). After correction, the data aresubjected to a statistical analysis. For each of 941 stars considered,the results of that analysis include a mean value of [Fe/H], an rmserror, an associated number of degrees of freedom, and one or moreidentification numbers for source papers. The catalog of these resultssupersedes an earlier version given by Taylor (\cite{t94b}).Catalog is only available in electronic form at the CDS via anonymousftp cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/398/731

Statistical cataloging of archival data for luminosity class IV-V stars. I. The epoch 2001 temperature catalog
This paper is one of a pair in which temperatures and metallicitycatalogs for class IV-V stars are considered. The temperature catalogdescribed here is derived from a calibration based on stellar angulardiameters. If published calibrations of this kind are compared by usingcolor-index transformations, temperature-dependent differences among thecalibrations are commonly found. However, such differences are minimizedif attention is restricted to calibrations based on Johnson V-K. Acalibration of this sort from Di Benedetto (\cite{dib98}) is thereforetested and adopted. That calibration is then applied to spectroscopicand photometric data, with the latter predominating. Cousins R-Iphotometry receives special attention because of its high precision andlow metallicity sensitivity. Testing of temperatures derived from thecalibration suggests that their accuracy and precision are satisfactory,though further testing will be warranted as new results appear. Thesetemperatures appear in the catalog as values of theta equiv5040/T(effective). Most of these entries are accompanied by measured orderived values of Cousins R-I. Entries are given for 951 stars.Catalog is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/398/721

On the Abundance of Potassium in Metal-Poor Stars
Based on extensive statistical-equilibrium calculations, we performed anon-LTE analysis of the K I 7699 equivalent-width data ofmetal-deficient stars for the purpose of clarifying the behavior of thephotospheric potassium abundance in disk/halo stars. While the resultingnon-LTE abundance corrections turned out to be considerably large,amounting to 0.2-0.7dex, their effect on the [K/Fe] vs. [Fe/H] relationis not very important, since these corrections do not show anysignificant dependence on the metallicity. Hence, we again confirmed theresults of previous LTE studies, that [K/Fe] shows a gradual systematicincrease toward a lowered metallicity up to [K/Fe] ~ 0.3 - 0.5 at[Fe/H]} ~ -1 to -2, such as in the case of αelements.

The C and N abundances in disk stars
Abundance analysis of carbon and nitrogen has been performed for asample of 90 F and G type main-sequence disk stars with a metallicityrange of -1.0 < [Fe/H] <+0.2 using the \ion{C} i and N I lines. Weconfirm a moderate carbon excess in the most metal-poor disk dwarfsfound in previous investigations. Our results suggest that carbon isenriched by superwinds of metal-rich massive stars at the beginning ofthe disk evolution, while a significant amount of carbon is contributedby low-mass stars in the late stage. The observed behavior of [N/Fe] isabout solar in the disk stars, irrespective of the metallicity. Thisresult suggests that nitrogen is produced mostly by intermediate-massstars. Based on observations carried out at National Astrono- micalObservatories (Xinglong, China).

Catalogue of [Fe/H] determinations for FGK stars: 2001 edition
The catalogue presented here is a compilation of published atmosphericparameters (Teff, log g, [Fe/H]) obtained from highresolution, high signal-to-noise spectroscopic observations. This newedition has changed compared to the five previous versions. It is nowrestricted to intermediate and low mass stars (F, G and K stars). Itcontains 6354 determinations of (Teff, log g, [Fe/H]) for3356 stars, including 909 stars in 79 stellar systems. The literature iscomplete between January 1980 and December 2000 and includes 378references. The catalogue is made up of two tables, one for field starsand one for stars in galactic associations, open and globular clustersand external galaxies. The catalogue is distributed through the CDSdatabase. Access to the catalogue with cross-identification to othersets of data is also possible with VizieR (Ochsenbein et al.\cite{och00}). The catalogue (Tables 1 and 2) is only available inelectronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr(130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/373/159 and VizieRhttp://vizier.u-strasbg.fr/.

Lithium abundances for 185 main-sequence stars: Galactic evolution and stellar depletion of lithium
We present a survey of lithium abundances in 185 main-sequence fieldstars with 5600 <~ Teff <~ 6600 K and -1.4 <~ [Fe/H]<~ +0.2 based on new measurements of the equivalent width of thelambda 6708 Li I line in high-resolution spectra of 130 stars and areanalysis of data for 55 stars from Lambert et al. (\cite{Lambert91}).The survey takes advantage of improved photometric and spectroscopicdeterminations of effective temperature and metallicity as well as massand age derived from Hipparcos absolute magnitudes, offering anopportunity to investigate the behaviour of Li as a function of theseparameters. An interesting result from this study is the presence of alarge gap in the log varepsilon (Li) - Teff plane, whichdistinguishes ``Li-dip'' stars like those first identified in the Hyadescluster by Boesgaard & Tripicco (\cite{Boesgaard86}) from otherstars with a much higher Li abundance. The Li-dip stars concentrate on acertain mass, which decreases with metallicity from about 1.4Msun at solar metallicity to 1.1 Msun at [Fe/H] =~-1.0. Excluding the Li-dip stars and a small group of lower mass starswith Teff < 5900 K and log varepsilon (Li) < 1.5, theremaining stars, when divided into four metallicity groups, may show acorrelation between Li abundance and stellar mass. The dispersion aroundthe log varepsilon (Li)-mass relation is about 0.2 dex below [Fe/H] =~-0.4 and 0.3 dex above this metallicity, which cannot be explained byobservational errors or differences in metallicity. Furthermore, thereis no correlation between the residuals of the log varepsilon (Li)-massrelations and stellar age, which ranges from 1.5 Gyr to about 15 Gyr.This suggests that Li depletion occurs early in stellar life and thatparameters other than stellar mass and metallicity affect the degree ofdepletion, e.g. initial rotation velocity and/or the rate of angularmomentum loss. It cannot be excluded, however, that a cosmic scatter ofthe Li abundance in the Galaxy at a given metallicity contributes to thedispersion in Li abundance. These problems make it difficult todetermine the Galactic evolution of Li from the data, but a comparisonof the upper envelope of the distribution of stars in the log varepsilon(Li) - [Fe/H] plane with recent Galactic evolutionary models by Romanoet al. (\cite{Romano99}) suggests that novae are a major source for theLi production in the Galactic disk; their occurrence seems to be theexplanation for the steep increase of Li abundance at [Fe/H] =~ -0.4.Based on observations carried out at Beijing Astronomical Observatory(Xinglong, PR China) and European Southern Observatory, La Silla, Chile.Table 1 is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/371/943 and athttp://www.edpsciences.org

Sc and Mn abundances in disk and metal-rich halo stars
Sc and Mn abundances are determined for 119 F and G main-sequence starswith -1.4 < [Fe/H] < +0.1, representing stars from the thin disk,the thick disk and the halo. The results indicate that Sc behaves likean alpha element, showing a decreasing [Sc/Fe] with increasingmetallicity in disk stars and a dual pattern in the kinematicallyselected halo stars. In contrast, Mn shows an increase from [Mn/Fe] =~-0.5 at [Fe/H] = -1.4 to zero at solar metallicity. There appears to bea discontinuity or sharp increase of [Mn/Fe] at [Fe/H] =~ -0.7corresponding to the transition between the thick and the thin disk. Itis discussed if supernovae of Type Ia are a major source of Mn in theGalactic disk or if the trend of [Mn/Fe] vs. [Fe/H] can be explained bynucleosynthesis in Type II supernovae with a strong metallicitydependence of the yield. Based on observations carried out at theEuropean Southern Observatory, La Silla, Chile, and Beijing AstronomicalObservatory, Xinglong, China

Spectral classification of weak-lined stars discovered photometrically
A random sample of 140 stars of the 800+ members in Olsen's (1984)sample of stars believed to be weak-lined has been observed andclassified independently of knowledge of the stars' photometriccharacteristics. It is found that 97 percent of the proposed weak-lineddwarfs are indeed such; the remainder are composites or normal, moreluminous stars. Deficiencies in the metallic-line types are comparedwith (Fe/H) values and metallic strength indices. These comparisons showthat a metal deficiency of at least a factor of two is needed before thespectra look weak-lined.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:やまねこ座
Right ascension:08h56m39.43s
Declination:+33°15'27.9"
Apparent magnitude:7.317
Distance:48.662 parsecs
Proper motion RA:-0.5
Proper motion Dec:-33.7
B-T magnitude:7.907
V-T magnitude:7.366

Catalogs and designations:
Proper Names   (Edit)
HD 1989HD 76349
TYCHO-2 2000TYC 2488-1625-1
USNO-A2.0USNO-A2 1200-06185940
HIPHIP 43904

→ Request more catalogs and designations from VizieR