Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

HD 205650


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Observational evidence for a broken Li Spite plateau and mass-dependent Li depletion
We present NLTE Li abundances for 88 stars in the metallicity range -3.5< [Fe/H] < -1.0. The effective temperatures are based on theinfrared flux method with improved E(B-V) values obtained mostly frominterstellar Na I D lines. The Li abundances were derived through MARCSmodels and high-quality UVES+VLT, HIRES+Keck and FIES+NOT spectra, andcomplemented with reliable equivalent widths from the literature. Theless-depleted stars with [Fe/H] < -2.5 and [Fe/H] > -2.5 fall intotwo well-defined plateaus of ALi = 2.18 (? = 0.04) andALi = 2.27 (? = 0.05), respectively. We show that thetwo plateaus are flat, unlike previous claims for a steep monotonicdecrease in Li abundances with decreasing metallicities. At allmetallicities we uncover a fine-structure in the Li abundances of Spiteplateau stars, which we trace to Li depletion that depends on bothmetallicity and mass. Models including atomic diffusion and turbulentmixing seem to reproduce the observed Li depletion assuming a primordialLi abundance ALi = 2.64, which agrees well with currentpredictions (ALi = 2.72) from standard Big Bangnucleosynthesis. Adopting the Kurucz overshooting model atmospheresincreases the Li abundance by +0.08 dex to ALi = 2.72, whichperfectly agrees with BBN+WMAP.Based in part on observations obtained at the W. M. Keck Observatory,the Nordic Optical Telescope on La Palma, and on data from theHIRES/Keck archive and the European Southern Observatory ESO/ST-ECFScience Archive Facility.Table 1 is only available in electronic form athttp://www.aanda.org

Two distinct halo populations in the solar neighborhood. Evidence from stellar abundance ratios and kinematics
Aims: Precise abundance ratios are determined for 94 dwarf starswith Teff K, -1.6 < [Fe/H] < -0.4, and distances D? 335 pc. Most of them have halo kinematics, but 16 thick-disk starsare included. Methods: Equivalent widths of atomic lines aremeasured from VLT/UVES and NOT/FIES spectra with resolutions R? 55000 and R ? 40 000, respectively. An LTE abundance analysis basedon MARCS models is applied to derive precise differential abundanceratios of Na, Mg, Si, Ca, Ti, Cr, and Ni with respect to Fe. Results: The halo stars fall into two populations, clearly separated in[?/Fe], where ? refers to the average abundance of Mg, Si,Ca, and Ti. Differences in [Na/Fe] and [Ni/Fe] are also present with aremarkably clear correlation between these two abundance ratios. Conclusions: The “high-?” stars may be ancient disk orbulge stars “heated” to halo kinematics by merging satellitegalaxies or they could have formed as the first stars during thecollapse of a proto-Galactic gas cloud. The kinematics of the“low-?” stars suggest that they have been accretedfrom dwarf galaxies, and that some of them may originate from the? Cen progenitor galaxy.Based on observations made with the Nordic Optical Telescope on LaPalma, and on data from the European Southern Observatory ESO/ST-ECFScience Archive Facility.Tables 3 and 4 are also available in electronicform at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5)or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/511/L10Figures5-8 and Tables 1-4 are only available in electronic form at http://www.aanda.org

Calibration of Strömgren uvby-H? photometry for late-type stars - a model atmosphere approach
Context: The use of model atmospheres for deriving stellar fundamentalparameters, such as T_eff, log g, and [Fe/H], will increase as we findand explore extreme stellar populations where empirical calibrations arenot yet available. Moreover, calibrations for upcoming large satellitemissions of new spectrophotometric indices, similar to the uvby-H?system, will be needed. Aims: We aim to test the power oftheoretical calibrations based on a new generation of MARCS models bycomparisons with observational photomteric data. Methods: Wecalculated synthetic uvby-H? colour indices from synthetic spectra.A sample of 367 field stars, as well as stars in globular clusters, isused for a direct comparison of the synthetic indices versus empiricaldata and for scrutinizing the possibilities of theoretical calibrationsfor temperature, metallicity, and gravity. Results: We show thatthe temperature sensitivity of the synthetic (b-y) colour is very closeto its empirical counterpart, whereas the temperature scale based uponH? shows a slight offset. The theoretical metallicity sensitivityof the m1 index (and for G-type stars its combination withc_1) is somewhat higher than the empirical one, based upon spectroscopicdeterminations. The gravity sensitivity of the synthetic c1index shows satisfactory behaviour when compared to obervations of Fstars. For stars cooler than the sun, a deviation is significant in thec1-(b-y) diagram. The theoretical calibrations of (b-y),(v-y), and c1 seem to work well for Pop II stars and lead toeffective temperatures for globular cluster stars supporting recentclaims that atomic diffusion occurs in stars near the turnoff point ofNGC 6397. Conclusions: Synthetic colours of stellar atmospherescan indeed be used, in many cases, to derive reliable fundamentalstellar parameters. The deviations seen when compared to observationaldata could be due to incomplete linelists but are possibly also due tothe effects of assuming plane-parallell or spherical geometry and LTE.Model colours are only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/498/527

Beryllium abundances in metal-poor stars
We have determined beryllium (Be) abundances for 25 metal-poor starsbased on the high-resolution and high signal-to-noise ratio spectra fromthe Very Large Telescope/Ultraviolet and Visual Echelle Spectrographdata base. Our results confirm that Be abundances increase with Fe,supporting the global enrichment of Be in the Galaxy. Oxygen abundancesbased on the [OI] forbidden line imply a linear relation with a slopeclose to one for the Be versus O trend, which indicates that Be isprobably produced in a primary process. Some strong evidence is foundfor the intrinsic dispersion of Be abundances at a given metallicity.The deviation of HD 132475 and HD 126681 from the general Be versus Feand Be versus O trends favours the predictions of the superbubble model.However, the possibility that such dispersion originates from theinhomogeneous enrichment in Fe and O of the protogalactic gas cannot beexcluded.Based on observations made with the European Southern Observatorytelescopes obtained from the ESO/ST-ECF Science Archive Facility.E-mail: tan@bao.ac.cn

Pulkovo compilation of radial velocities for 35495 stars in a common system.
Not Available

Medium resolution spectroscopy in ω Centauri: abundances of 400 subgiant and turn-off region stars
Medium resolution spectra of more than 400 subgiant and turn-off regionstars in ω Centauri were analysed. The observations were performedat the VLT/Paranal with FORS2/MXU. In order to determine themetallicities of the sample stars, we defined a set of line indices(mostly iron) adjusted to the resolution of our spectra. The indices asdetermined for ω Cen were then compared to line indices from starsin the chemically homogeneous globular cluster M 55, in addition tostandard stars and synthetic spectra. The uncertainties in the derivedmetallicities are of the order of ±0.2 {dex}. Our study confirmsthe large variations in iron abundances found on the giant branch inearlier studies (-2.2 <[Fe/H]< -0.7 dex). In addition, we studiedthe α-element and CN/CH abundances. Stars of different metallicitygroups not only show distinct ages (Hilker et al. 2004, A&A, 422,L9), but also different behaviours in their relative abundances. Theα abundances increase smoothly with increasing metallicityresulting in a flat [ α/Fe] ratio over the whole observedmetallicity range. The combined CN+CH abundance increases smoothly withincreasing iron abundance. The most metal-rich stars are CN-enriched. Ina CN vs. CH plot, though, the individual abundances divide into CN- andCH-rich branches. The large abundance variations observed in our sampleof (unevolved) subgiant branch stars most probably have their origin inthe pre-enriched material rather than in internal mixing effects.Together with the age spread of the different sub-populations, ourfindings favour the formation of ω Centauri within a more massiveprogenitor.

Metallicity and absolute magnitude calibrations for UBV photometry
Calibrations are presented here for metallicity ([Fe/H]) in terms of theultraviolet excess, [δ(U - B) at B - V = 0.6, hereafterδ0.6], and also for the absolute visual magnitude(MV) and its difference with respect to the Hyades(ΔMHV) in terms of δ0.6 and(B - V), making use of high-resolution spectroscopic abundances from theliterature and Hipparcos parallaxes. The relation[Fe/H]-δ0.6 has been derived for dwarf plus turn-offstars, and also for dwarf, turn-off, plus subgiant stars classifiedusing the MV-(B - V)0 plane of Fig. 11, which iscalibrated with isochrones from Bergbusch & VandenBerg (and alsoVandenBerg & Clem). The [Fe/H]-δ0.6 relations inour equations (5) and (6) agree well with those of Carney, as can beseen from Fig. 5(a). Within the uncertainties, the zero-points,+0.13(+/-0.05) of equation (5) and +0.13(+/-0.04) of equation (6), arein good agreement with the photometric ones of Cameron and of Carney,and close to the spectroscopic ones of Cayrel et al. and of Boesgaard& Friel for the Hyades open cluster. Good quantitative agreementbetween our estimated [Fe/H] abundances with those from uvby-βphotometry and spectroscopic [Fe/H]spec values demonstratesthat our equation (6) can be used in deriving quality photometric metalabundances for field stars and clusters using UBV data from variousphotometric surveys.For dwarf and turn-off stars, a new hybrid MV calibration ispresented, based on Hipparcos parallaxes withσπ/π <= 0.1 and with a dispersion of +/-0.24in MV. This hybrid MV calibration containsδ0.6 and (B - V) terms, plus higher order cross-termsof these, and is valid for the ranges of +0.37 <= (B - V)0<= +0.88,- 0.10 <= δ0.6 <= +0.29 and 3.44<= MV <= 7.23. For dwarf and turn-off stars, therelation for ΔMHV is revised and updated interms of (B - V) and δ0.6, for the ranges of -0.10<= δ0.6 <= +0.29, and +0.49 <= (B -V)0 <= +0.89, again making use of Hipparcos parallaxeswith σπ/π <= 0.1. These parallaxes formetal-poor dwarf and turn-off stars in our sample reveal that thedifference of ΔMHV(B - V) relative to Hyadesat (B - V) = +0.70 should be 1.37mag, instead of the 1.58mag given byLaird et al. In general, Hipparcos parallaxes are larger thanground-based ones, causing a divergence of ourΔMHV(B - V,δ0.6) relation(the solid line in Fig. 15b), from the one of Laird et al. (the dashedline) for the range +0.10 <= δ0.6 <= +0.29 ourabsolute magnitudes are fainter, as has been confirmed for localsubdwarfs by Reid. Our final calibrations forΔMHV(B - V, δ0.6),equations (16) and (17), are third-order polynomials inδ0.6, pass through the origin, and provide photometricdistances in reasonable agreement with those obtained directly fromHipparcos parallaxes (Fig. 18).

Effective temperature scale and bolometric corrections from 2MASS photometry
We present a method to determine effective temperatures, angularsemi-diameters and bolometric corrections for population I and II FGKtype stars based on V and 2MASS IR photometry. Accurate calibration isaccomplished by using a sample of solar analogues, whose averagetemperature is assumed to be equal to the solar effective temperature of5777 K. By taking into account all possible sources of error we estimateassociated uncertainties to better than 1% in effective temperature andin the range 1.0-2.5% in angular semi-diameter for unreddened stars.Comparison of our new temperatures with other determinations extractedfrom the literature indicates, in general, remarkably good agreement.These results suggest that the effective temperaure scale of FGK starsis currently established with an accuracy better than 0.5%-1%. Theapplication of the method to a sample of 10 999 dwarfs in the Hipparcoscatalogue allows us to define temperature and bolometric correction (Kband) calibrations as a function of (V-K), [m/H] and log g. Bolometriccorrections in the V and K bands as a function of T_eff, [m/H] and log gare also given. We provide effective temperatures, angularsemi-diameters, radii and bolometric corrections in the V and K bandsfor the 10 999 FGK stars in our sample with the correspondinguncertainties.

Galactic model parameters for field giants separated from field dwarfs by their 2MASS and V apparent magnitudes
We present a method which separates field dwarfs and field giants bytheir 2MASS and V apparent magnitudes. This method is based onspectroscopically selected standards and is hence reliable. We appliedit to stars in two fields, SA 54 and SA 82, and we estimated a full setof Galactic model parameters for giants including their total localspace density. Our results are in agreement with the ones given in therecent literature.

Sulphur abundance in Galactic stars
We investigate sulphur abundance in 74 Galactic stars by using highresolution spectra obtained at ESO VLT and NTT telescopes. For the firsttime the abundances are derived, where possible, from three opticalmultiplets: Mult. 1, 6, and 8. By combining our own measurements withdata in the literature we assemble a sample of 253 stars in themetallicity range -3.2  [Fe/H]  +0.5. Two important features,which could hardly be detected in smaller samples, are obvious from thislarge sample: 1) a sizeable scatter in [S/Fe] ratios around [Fe/H]˜-1; 2) at low metallicities we observe stars with [S/Fe]˜ 0.4, aswell as stars with higher [S/Fe] ratios. The latter do not seem to bekinematically different from the former ones. Whether the latter findingstems from a distinct population of metal-poor stars or simply from anincreased scatter in sulphur abundances remains an open question.

Abundance trends in kinematical groups of the Milky Way's disk
We have compiled a large catalogue of metallicities and abundance ratiosfrom the literature in order to investigate abundance trends of severalalpha and iron peak elements in the thin disk and the thick disk of theGalaxy. The catalogue includes 743 stars with abundances of Fe, O, Mg,Ca, Ti, Si, Na, Ni and Al in the metallicity range -1.30 < [Fe/H]< +0.50. We have checked that systematic differences betweenabundances measured in the different studies were lower than randomerrors before combining them. Accurate distances and proper motions fromHipparcos and radial velocities from several sources have been retreivedfor 639 stars and their velocities (U, V, W) and galactic orbits havebeen computed. Ages of 322 stars have been estimated with a Bayesianmethod of isochrone fitting. Two samples kinematically representative ofthe thin and thick disks have been selected, taking into account theHercules stream which is intermediate in kinematics, but with a probabledynamical origin. Our results show that the two disks are chemicallywell separated, they overlap greatly in metallicity and both showparallel decreasing alpha elements with increasing metallicity, in theinterval -0.80 < [Fe/H] < -0.30. The Mg enhancement with respectto Fe of the thick disk is measured to be 0.14 dex. An even largerenhancement is observed for Al. The thick disk is clearly older than thethin disk with tentative evidence of an AMR over 2-3 Gyr and a hiatus instar formation before the formation of the thin disk. We do not observea vertical gradient in the metallicity of the thick disk. The Herculesstream has properties similar to that of the thin disk, with a widerrange of metallicity. Metal-rich stars assigned to the thick disk andsuper-metal-rich stars assigned to the thin disk appear as outliers inall their properties.

Analysis of medium resolution spectra by automated methods - Application to M 55 and ω Centauri
We have employed feedforward neural networks trained on syntheticspectra in the range 3800 to 5600 Å with resolutions of ~2-3Å to determine metallicities from spectra of about 1000main-sequence turn-off, subgiant and red giant stars in the globularclusters M 55 and ω Cen. The overall metallicity accuracies are ofthe order of 0.15 to 0.2 dex. In addition, we tested how well thestellar parameters log g and T_eff can be retrieved from such datawithout additional colour or photometric information. We find overalluncertainties of 0.3 to 0.4 dex for log g and 140 to 190 K for T_eff. Inorder to obtain some measure of uncertainty for the determined values of[Fe/H], log g and T_eff, we applied the bootstrap method for the firsttime to neural networks for this kind of parametrization problem. Thedistribution of metallicities for stars in ω Cen clearly shows alarge spread in agreement with the well known multiple stellarpopulations in this cluster.

Heavy elements and chemical enrichment in globular clusters
High resolution (R  40 000) and high S/N spectra have been acquiredwith UVES on the VLT-Kueyen (Paranal Observatory, ESO Chile) for severalmain sequence turnoff stars (V ˜ 17 mag) and subgiants at the baseof the Red Giant Branch (V ˜ 16 mag) in three globular clusters (NGC6397, NGC 6752 and 47 Tuc/NGC 104) at different metallicities(respectively [Fe/H] ≃ -2.0; -1.5; -0.7). Spectra for a sample of25 field halo subdwarves have also been taken with equal resolution, buthigher S/N. These data have been used to determine the abundances ofseveral neutron-capture elements in these three clusters: strontium,yttrium, barium and europium. This is the first abundance determinationof these heavy elements for such unevolved stars in these three globularclusters. These values, together with the [Ba/Eu] and [Sr/Ba] abundanceratios, have been used to test the self-enrichment scenario. Acomparison is done with field halo stars and other well known Galacticglobular clusters in which heavy elements have already been measured inthe past, at least in bright giants (V  11-12 mag). Our resultsshow clearly that globular clusters have been uniformly enriched by r-and s-process syntheses, and that most of them seem to follow exactlythe same abundance patterns as field halo stars, which discards the``classical'' self-enrichment scenario for the origin of metallicitiesand heavy elements in globular clusters.Based on data collected at the European Southern Observatory with theVLT-UT2, Paranal, Chile (ESO-LP 165.L-0263).

Abundances for metal-poor stars with accurate parallaxes. I. Basic data
We present element-to-element abundance ratios measured from highdispersion spectra for 150 field subdwarfs and early subgiants withaccurate Hipparcos parallaxes (errors <20%). For 50 stars new spectrawere obtained with the UVES on Kueyen (VLT UT2), the McDonald 2.7 mtelescope, and SARG at TNG. Additionally, literature equivalent widthswere taken from the works by Nissen & Schuster, Fulbright, andProchaska et al. to complement our data. The whole sample includes boththick disk and halo stars (and a few thin disk stars); most stars havemetallicities in the range -2<[Fe/H]<-0.6. We found our data, thatof Nissen & Schuster, and that of Prochaska to be of comparablequality; results from Fulbright scatter a bit more, but they are stillof very good quality and are extremely useful due to the large size ofhis sample. The results of the present analysis will be used inforthcoming papers to discuss the chemical properties of thedissipational collapse and accretion components of our Galaxy.Based in part on data collected at the European Southern Observatory,Chile, at the MacDonald Observatory, Texas, USA, and at the TelescopioNazionale Galileo, Canary Island, INAF,Italy-Spain.}\fnmsep\thanks{Table 1 is only available in electronic format the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) orvia\resizebox{8.8cm}{2.2mm}htpp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/404/187}

Oxygen line formation in late-F through early-K disk/halo stars. Infrared O I triplet and [O I] lines
In order to investigate the formation of O I 7771-5 and [O I] 6300/6363lines, extensive non-LTE calculations for neutral atomic oxygen werecarried out for wide ranges of model atmosphere parameters, which areapplicable to early-K through late-F halo/disk stars of variousevolutionary stages.The formation of the triplet O I lines was found to be well described bythe classical two-level-atom scattering model, and the non-LTEcorrection is practically determined by the parameters of theline-transition itself without any significant relevance to the detailsof the oxygen atomic model. This simplifies the problem in the sensethat the non-LTE abundance correction is essentially determined only bythe line-strength (Wlambda ), if the atmospheric parametersof Teff, log g, and xi are given, without any explicitdependence of the metallicity; thus allowing a useful analytical formulawith tabulated numerical coefficients. On the other hand, ourcalculations lead to the robust conclusion that LTE is totally valid forthe forbidden [O I] lines.An extensive reanalysis of published equivalent-width data of O I 7771-5and [O I] 6300/6363 taken from various literature resulted in theconclusion that, while a reasonable consistency of O I and [O I]abundances was observed for disk stars (-1 <~ [Fe/H] <~ 0), theexistence of a systematic abundance discrepancy was confirmed between OI and [O I] lines in conspicuously metal-poor halo stars (-3 <~[Fe/H] <~ -1) without being removed by our non-LTE corrections, i.e.,the former being larger by ~ 0.3 dex at -3 <~ [Fe/H] <~ -2.An inspection of the parameter-dependence of this discordance indicatesthat the extent of the discrepancy tends to be comparatively lessenedfor higher Teff/log g stars, suggesting the preference ofdwarf (or subgiant) stars for studying the oxygen abundances ofmetal-poor stars.Tables 2, 5, and 7 are only available in electronic form, at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/402/343 and Table\ref{tab3} is only available in electronic form athttp://www.edpsciences.org

Improved Astrometry and Photometry for the Luyten Catalog. II. Faint Stars and the Revised Catalog
We complete construction of a catalog containing improved astrometry andnew optical/infrared photometry for the vast majority of NLTT starslying in the overlap of regions covered by POSS I and by the secondincremental Two Micron All Sky Survey (2MASS) release, approximately 44%of the sky. The epoch 2000 positions are typically accurate to 130 mas,the proper motions to 5.5 mas yr-1, and the V-J colors to0.25 mag. Relative proper motions of binary components are measured to 3mas yr-1. The false-identification rate is ~1% for11<~V<~18 and substantially less at brighter magnitudes. Theseimprovements permit the construction of a reduced proper-motion diagramthat, for the first time, allows one to classify NLTT stars intomain-sequence (MS) stars, subdwarfs (SDs), and white dwarfs (WDs). We inturn use this diagram to analyze the properties of both our catalog andthe NLTT catalog on which it is based. In sharp contrast to popularbelief, we find that NLTT incompleteness in the plane is almostcompletely concentrated in MS stars, and that SDs and WDs are detectedalmost uniformly over the sky δ>-33deg. Our catalogwill therefore provide a powerful tool to probe these populationsstatistically, as well as to reliably identify individual SDs and WDs.

HIPPARCOS age-metallicity relation of the solar neighbourhood disc stars
We derive age-metallicity relations (AMRs) and orbital parameters forthe 1658 solar neighbourhood stars to which accurate distances aremeasured by the HIPPARCOS satellite. The sample stars comprise 1382 thindisc stars, 229 thick disc stars, and 47 halo stars according to theirorbital parameters. We find a considerable scatter for thin disc AMRalong the one-zone Galactic chemical evolution (GCE) model. Orbits andmetallicities of thin disc stars show now clear relation each other. Thescatter along the AMR exists even if the stars with the same orbits areselected. We examine simple extension of one-zone GCE models whichaccount for inhomogeneity in the effective yield and inhomogeneous starformation rate in the Galaxy. Both extensions of the one-zone GCE modelcannot account for the scatter in age - [Fe/H] - [Ca/Fe] relationsimultaneously. We conclude, therefore, that the scatter along the thindisc AMR is an essential feature in the formation and evolution of theGalaxy. The AMR for thick disc stars shows that the star formationterminated 8 Gyr ago in the thick disc. As already reported by Grattonet al. (\cite{Gratton_et.al.2000}) and Prochaska et al.(\cite{Prochaska_et.al.2000}), thick disc stars are more Ca-rich thanthin disc stars with the same [Fe/H]. We find that thick disc stars showa vertical abundance gradient. These three facts, the AMR, verticalgradient, and [Ca/Fe]-[Fe/H] relation, support monolithic collapseand/or accretion of satellite dwarf galaxies as likely thick discformation scenarios. Tables 2 and 3 are only available in electronicform at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5)or via http:/ /cdsweb.u-strasbg.fr/ cgi-bin/qcat?J/ A+A/394/927

O/Fe in metal-poor main sequence and subgiant stars
A study of the O/Fe ratio in metal-poor main sequence and subgiant starsis presented using the \ion{Oi},6300 Å line, the O I 7774 Åtriplet, and a selection of weak Fe Ii lines observed on high-resolutionspectra acquired with the VLT UVES spectrograph. The \ion{Oi line isdetected in the spectra of 18 stars with -2.4 < [Fe/H] < -0.5, andthe triplet is observed for 15 stars with Fe/H ranging from -1.0 to-2.7. The abundance analysis was made first using standard modelatmospheres taking into account non-LTE effects on the triplet: the\ion{Oi} line and the triplet give consistent results with [O/Fe]increasing quasi-linearly with decreasing [Fe/H] reaching [O/Fe] =~ +0.7at [Fe/H] = -2.5. This trend is in reasonable agreement with otherresults for [O/Fe] in metal-poor dwarfs obtained using standardatmospheres and both ultraviolet and infrared OH lines. There is alsobroad agreement with published results for [O/Fe] for giants obtainedusing standard model atmospheres and the \ion{Oi} line, and the OHinfrared lines, but the O I lines give higher [O/Fe] values which may,however, fall into place when non-LTE effects are considered. Whenhydrodynamical model atmospheres representing stellar granulation indwarf and subgiant stars replace standard models, the [O/Fe] from the\ion{Oi} and Fe Ii lines is decreased by an amount which increases withdecreasing [Fe/H]. These 3D effects on [O/Fe] is compounded by theopposite behaviour of the \ion{Oi} (continuous opacity effect) and Fe Iilines (excitation effect). The [O/Fe] vs. [Fe/H] relation remainsquasi-linear extending to [O/Fe] =~ +0.5 at [Fe/H] = -2.5, but with atendency of a plateau with [O/Fe] =~ +0.3 for -2.0 < [Fe/H] <-1.0, and a hint of cosmic scatter in [O/Fe] at [Fe/H] =~ -1.0. Use ofthe hydrodynamical models disturbs the broad agreement between theoxygen abundances from the \ion{Oi} , O I, and OH lines, but 3D non-LTEeffects may serve to erase these differences. The [O/Fe] values from the\ion{Oi} line and the hydrodynamical model atmospheres for dwarfs andsubgiant stars are lower than the values for giants using standard modelatmospheres and the \ion{Oi}, and O I lines. Based on observationscollected at the European Southern Observatory, Chile (ESO Nos.65.L-0131, 65.L-0507, and 67.D-0439).

Catalogue of [Fe/H] determinations for FGK stars: 2001 edition
The catalogue presented here is a compilation of published atmosphericparameters (Teff, log g, [Fe/H]) obtained from highresolution, high signal-to-noise spectroscopic observations. This newedition has changed compared to the five previous versions. It is nowrestricted to intermediate and low mass stars (F, G and K stars). Itcontains 6354 determinations of (Teff, log g, [Fe/H]) for3356 stars, including 909 stars in 79 stellar systems. The literature iscomplete between January 1980 and December 2000 and includes 378references. The catalogue is made up of two tables, one for field starsand one for stars in galactic associations, open and globular clustersand external galaxies. The catalogue is distributed through the CDSdatabase. Access to the catalogue with cross-identification to othersets of data is also possible with VizieR (Ochsenbein et al.\cite{och00}). The catalogue (Tables 1 and 2) is only available inelectronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr(130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/373/159 and VizieRhttp://vizier.u-strasbg.fr/.

The O-Na and Mg-Al anticorrelations in turn-off and early subgiants in globular clusters
High dispersion spectra (R>~ 40 000) for a quite large number ofstars at the main sequence turn-off and at the base of the giant branchin NGC 6397 and NGC 6752 were obtained with the UVES on Kueyen (VLTUT2). The [Fe/H] values we found are -2.03+/- 0.02+/- 0.04\ and -1.42+/-0.02+/- 0.04\ for NGC 6397 and NGC 6752 respectively, where the firsterror bars refer to internal and the second ones to systematic errors(within the abundance scale defined by our analysis of 25 subdwarfs withgood Hipparcos parallaxes). In both clusters the [Fe/H]'s obtained forTO-stars agree perfectly (within a few percent) with that obtained forstars at the base of the RGB. The [O/Fe]=0.21+/- 0.05 value we obtainfor NGC 6397 is quite low, but it agrees with previous results obtainedfor giants in this cluster. Moreover, the star-to-star scatter in both Oand Fe is very small, indicating that this small mass cluster ischemically very homogenous. On the other hand, our results show clearlyand for the first time that the O-Na anticorrelation (up to now seenonly for stars on the red giant branches of globular clusters) ispresent among unevolved stars in the globular cluster NGC 6752, a moremassive cluster than NGC 6397. A similar anticorrelation is present alsofor Mg and Al, and C and N. It is very difficult to explain the observedNa-O, and Mg-Al anticorrelation in NGC 6752 stars by a deep mixingscenario; we think it requires some non internal mechanism. Based ondata collected at the European Southern Observatory, Chile.

Distances, Ages, and Epoch of Formation of Globular Clusters
We review the results on distances and absolute ages of Galacticglobular clusters (GCs) obtained after the release of the Hipparcoscatalog. Several methods aimed at the definition of the Population IIlocal distance scale are discussed, and their results compared,exploiting new results for RR Lyraes in the Large Magellanic Cloud(LMC). We find that the so-called short distance and long distancescales may be reconciled whether or not a consistent reddening scale isadopted for Cepheids and RR Lyrae variables in the LMC. Emphasis isgiven in the paper to the discussion of distances and ages of GCsderived using Hipparcos parallaxes of local subdwarfs. We find that theselection criteria adopted to choose the local subdwarfs, as well as thesize of the corrections applied to existing systematic biases, are themain culprit for the differences found among the various independentstudies that first used Hipparcos parallaxes and the subdwarf fittingtechnique. We also caution that the absolute age of M92 (usuallyconsidered one of the oldest clusters) still remains uncertain due tothe lack of subdwarfs of comparable metallicity with accurateparallaxes. Distances and ages for the nine clusters discussed in aprevious paper by Gratton et al. are rederived using an enlarged sampleof local subdwarfs, which includes about 90% of the metal-poor dwarfswith accurate parallaxes (Δπ/π<=0.12) in the wholeHipparcos catalog. On average, our revised distance moduli are decreasedby 0.04 mag with respect to Gratton et al. The corresponding age of theGCs is t=11.5+/-2.6 Gyr, where the error bars refer to the 95%confidence range. The relation between the zero-age horizontal branch(ZAHB) absolute magnitude and metallicity for the nine program clustersturns out to beMV(ZAHB)=(0.18+/-0.09)([Fe/H]+1.5)+(0.53+/-0.12) Thanks toHipparcos the major contribution to the total error budget associatedwith the subdwarf fitting technique has been moved from parallaxes tophotometric calibrations, reddening, and metallicity scale. This totaluncertainty still amounts to about +/-0.12 mag. We then compare thecorresponding (true) LMC distance modulusμLMC=18.64+/-0.12 mag with other existing determinations.We conclude that at present the best estimate for the distance of theLMC is μLMC=18.54+/-0.03+/-0.06, suggesting that distancesfrom the subdwarf fitting method are ~1 σ too long. Consequently,our best estimate for the age of the GCs is revised to Age=12.9+/-2.9Gyr (95% confidence range). The best relation between ZAHB absolutemagnitude and metallicity isMV(ZAHB)=(0.18+/-0.09)([Fe/H]+1.5)+(0.63+/-0.07). Finally, wecompare the ages of the GCs with the cosmic star formation rate recentlydetermined by studies of the Hubble Deep Field (HDF), exploiting thedeterminations of ΩM=0.3 andΩΛ=0.7 provided by Type Ia supernovae surveys.We find that the epoch of formation of the GCs (at z~3) matches well themaximum of the star formation rate for elliptical galaxies in the HDF asdetermined by Franceschini et al. Based on data from the Hipparcosastrometry satellite.

Models for Old, Metal-poor Stars with Enhanced α-Element Abundances. I. Evolutionary Tracks and ZAHB Loci; Observational Constraints
Stellar evolutionary tracks have been computed for 17 [Fe/H] values from-2.31 to -0.30 assuming, in each case, [α/Fe]=0.0, 0.3, and 0.6.The helium abundance was assumed to vary from Y=0.2352 at [Fe/H]=-2.31to Y=0.2550 at [Fe/H]=-0.30 and held constant for the different choicesof [α/Fe] at a fixed iron content. Masses in the range0.5<=Msolar<=1.0, in 0.1 Msolarsteps, were generally considered, though sequences for higher massvalues were computed, as necessary, to ensure that isochrones as``young'' as 8 Gyr could be generated for each grid. All of the stellarmodels are based on an equation of state that treats nonideal effects,the latest nuclear reaction and neutrino cooling rates, and opacitiesthat were computed specifically for the adopted chemical mixtures. Thetracks were extended to the tip of the giant branch or to an age of 30Gyr, whichever came first, and zero-age horizontal-branch (ZAHB) lociwere constructed using the helium core masses and chemical profiles fromappropriate red giant precursors. Selected models have been comparedwith those computed by A. V. Sweigart, for the same masses and chemicalcompositions, to demonstrate that the results obtained from two entirelyindependent stellar evolution codes agree well with one another whenvery similar input physics is assumed. In the case of extremelymetal-deficient stars, an enhancement in the abundance of theα-elements causes a single, fairly significant bump in the opacityat a temperature just above 106 K, which is caused byabsorption processes involving the K shell of oxygen. This peak becomessteadily more pronounced as the overall metallicity increases and asecond bump, arising from the L edges of Ne, Mg, and Si, eventuallyappears near logT=5.6. As far as the tracks and isochrones areconcerned, we find that, as already reported by others, it is possibleto mimic the computations for [α/Fe]>0 remarkably well by thosefor scaled-solar mixes simply by requiring the total mass-fractionabundance of the heavy elements, Z, to be the same. However, this resultholds only for metallicities significantly less than solar. Above[Fe/H]>~-0.8, tracks and isochrones for enhanced α-elementmixtures begin to have systematically hotter/bluer turnoffs and redgiant branches than those for scaled-solar mixtures of the heavyelements. Also addressed is the extent to which our models satisfy theconstraints posed by the local subdwarfs, the distances of which arebased on Hipparcos parallax measurements. Our analysis suggests that thepredicted metallicity dependence of the location of the lower mainsequence on the C-M diagram is in good agreement with the observeddependence. In fact, we do not find any compelling evidence from thelocal Population II calibrators that the colors of our models requiresignificant adjustments. In further support of our calculations, we findthat, both in zero point and slope, the computed giant branches on the(Mbol,logTeff)-plane agree well with thoseinferred for globular clusters from observations in the infrared.Moreover, our ZAHB models have luminosities that are just outside the 1σ error bars of the mean MV's inferred for RR Lyraestars from Baade-Wesselink, statistical parallax, and trigonometricparallax studies. Lower helium contents or higher α-elementabundances or an increase in the conductive opacities are among thepossible ways of reducing the differences that remain. To facilitatecomparisons with observations, the tracks/ZAHBs are provided withpredicted BV(RI)C photometry.

The galactic lithium evolution revisited
The evolution of the 7Li abundance in the Galaxy has beencomputed by means of the two-infall model of Galactic chemicalevolution. We took into account several stellar 7Li sources:novae, massive AGB stars, C-stars and Type II SNe. In particular, weadopted new theoretical yields for novae. We also took into account the7Li production from GCRs. In particular, the absolute yieldsof 7Li, as suggested by a recent reevaluation of thecontribution of GCR spallation to the 7Li abundance, havebeen adopted. We compared our theoretical predictions for the evolutionof 7Li abundance in the solar neighborhood with a newcompilation of data, where we identified the population membership ofthe stars on a kinematical basis. A critical analysis of extantobservations revealed a possible extension of the Li plateau towardshigher metallicities (up to [Fe/H] ~ -0.5 or even -0.3) with a steeprise afterwards. We conclude that 1) the 7Li contributionfrom novae is required in order to reproduce the shape of the growth ofA(Li) versus [Fe/H], 2) the contribution from Type II SNe should belowered by at least a factor of two, and 3) the 7Liproduction from GCRs is probably more important than previouslyestimated, in particular at high metallicities: by taking into accountGCR nucleosynthesis we noticeably improved the predictions on the7Li abundance in the presolar nebula and at the present timeas inferred from measures in meteorites and T Tauri stars, respectively.We also predicted a lower limit for the present time 7Liabundance expected in the bulge, a prediction which might be tested byfuture observations. Tables~3 and 4 are only available in electronicform at the CDS via anonymous ftp to: cdsarc.u-strasbg.fr (130.79.128.5)or via http://cdsweb.u-strasbg.fr/Abstract.html

Abundances of metal-weak thick-disc candidates
High-resolution spectra of five candidate metal-weak thick-disc starssuggested by Beers & Sommer-Larsen are analysed to determine theirchemical abundances. The low abundance of all the objects has beenconfirmed, with metallicity reaching [Fe/H]=-2.9. However, for threeobjects the astrometric data from the Hipparcos catalogue suggest theyare true halo members. The remaining two, for which proper-motion dataare not available, may have disc-like kinematics. It is therefore clearthat it is useful to address properties of putative metal-weakthick-disc stars only if they possess full kinematic data. For CS22894-19 an abundance pattern similar to those of typical halo stars isfound, suggesting that chemical composition is not a useful discriminantbetween thick-disc and halo stars. CS 29529-12 is found to be C-enhancedwith [C/Fe]=+1.0 other chemical peculiarities involve the s-processelements: [Sr/Fe]=-0.65 and [Ba/Fe]=+0.62, leading to a high [Ba/Sr],considerably larger than that found in more metal-rich carbon-richstars, but similar to those in LP 706-7 and LP 625-44, discussed byNorris et al. Hipparcos data have been used to calculate the spacevelocities of 25 candidate metal-weak thick-disc stars, thus allowing usto identify three bona fide members, which support the existence of ametal-poor tail of the thick disc, at variance with a claim to thecontrary by Ryan & Lambert.

Empirical calibration of the lambda 4000 Å break
Empirical fitting functions, describing the behaviour of the lambda 4000Ä break, D4000, in terms of effective temperature,metallicity and surface gravity, are presented. For this purpose, thebreak has been measured in 392 stars from the Lick/IDS Library. We havefollowed a very detailed error treatment in the reduction and fittingprocedures, allowing for a reliable estimation of the breakuncertainties. This calibration can be easily incorporated into stellarpopulation models to provide accurate predictions of the break amplitudefor, relatively old, composite systems. Table 1 is only available inelectronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr(130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html

Stellar Iron Abundances: Non-LTE Effects
We report new statistical equilibrium calculations for Fe I and Fe II inthe atmosphere of late-type stars. We used atomic models for Fe I and FeII having, respectively, 256 and 190 levels, as well as 2117 and 3443radiative transitions. Photoionization cross sections are from the IronProject. These atomic models were used to investigate non-LTE (NLTE)effects in iron abundances of late-type stars with different atmosphericparameters. We found that most Fe I lines in metal-poor stars are formedin conditions far from LTE. We derived metallicity corrections of about0.3 dex with respect to LTE values for the case of stars with[Fe/H]~-3.0. Fe II is found not to be affected by significant NLTEeffects. The main NLTE effect invoked in the case of Fe I isoverionization by ultraviolet radiation; thus classical ionizationequilibrium is far from being satisfied. An important consequence isthat surface gravities derived by LTE analysis are in error and shouldbe corrected before final abundance corrections. This apparently solvesthe observed discrepancy between spectroscopic surface gravities derivedby LTE analyses and those derived from Hipparcos parallaxes. A table ofNLTE [Fe/H] and log g values for a sample of metal-poor late-type starsis given.

Photometric Abundance Calibration of delta Scuti Stars Using HK Photometry
The hk index has been used as a metallicity indicator for RR Lyraevariable stars. It is now being applied to the shorter period deltaScuti variables. Employing spectroscopic abundances of stars withpublished hk values and photometric indices calculated from stellaratmosphere models, a three-dimensional interpolation is used todetermine [Fe/H] from intrinsic b-y, c_1, and hk values. The resulting[Fe/H], log g, and T_eff values for 10 delta Scuti stars are presented.

HIPPARCOS subdwarf parallaxes - Metal-rich clusters and the thick disk
We have used main-sequence fitting to calibrate the distances to theglobular clusters NGC 6397, M5, NGC 288, M71, and 47 Tucanae, matchingthe cluster photometry against data for subdwarfs with precise Hipparcosparallax measurements and accurate abundance determinations. Both thecluster and subdwarf abundance scales are tied to high-resolutionspectroscopic analyses. The distance moduli that we derive for the fiveclusters are 12.24, 14.52, 15.00, 13.19, and 13.59 mag, withuncertainties of 0.15 mag. These distances are higher than those derivedin pre-Hipparcos investigations. The calibrated cluster color-magnitudediagrams provide fiducial sequences in the (MV, B - V)-plane, outliningthe distribution expected for stars of a particular abundance. We havecombined the photometric data for NGC 6397, M5, and 47 Tucanae with themean color-magnitude relation delineated by nearby FGK dwarfs to definea reference grid in the (MV, B - V)-plane, and we have matched this gridagainst data for stars drawn from the Lowell Proper Motion Survey.Limiting the comparison to nonbinaries, there are significantly fewersubluminous stars than expected given the spectroscopic metallicitydistribution. Inverting the analysis, this implies a reduction by afactor of three in the proportion of stars contributing to themetal-poor tail of the Galactic disk. We discuss the implications ofthese results.

H gamma and H delta Absorption Features in Stars and Stellar Populations
The H gamma and H delta absorption features are measured in a sample of455 (out of an original 460) Lick/IDS stars with pseudo--equivalentwidth indices. For each Balmer feature, two definitions, involving anarrow (~20 Angstroms) and a wide (~40 Angstroms) central bandpass, aremeasured. These four new Balmer indices augment 21 indices previouslydetermined by Worthey et al., and polynomial fitting functions that giveindex strengths as a function of stellar temperature, gravity, and[Fe/H] are provided. The new indices are folded into models for theintegrated light of stellar populations, and predictions are given forsingle-burst stellar populations of a variety of ages and metallicities.Contrary to our initial hopes, the indices cannot break a degeneracybetween burst age and burst strength in post-starburst objects, but theyare successful mean-age indicators when used with sensitive metallicityindicators. An appendix gives data, advice, and examples of how totransform new spectra to the 25-index Lick/IDS system.

The Abundance of CN. Calcium and Heavy Elements in High Velocity Stars.
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1997AJ....114..825E&db_key=AST

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Pisces Austrinus
Right ascension:21h37m26.03s
Declination:-27°38'06.7"
Apparent magnitude:9.03
Proper motion RA:341.1
Proper motion Dec:-207.8
B-T magnitude:9.707
V-T magnitude:9.086

Catalogs and designations:
Proper Names   (Edit)
HD 1989HD 205650
TYCHO-2 2000TYC 6947-539-1
USNO-A2.0USNO-A2 0600-43661347
HIPHIP 106749

→ Request more catalogs and designations from VizieR